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Abstract: The heat equation is one of the fundamental partial differential equations in mathematical physics, 

describing how heat diffuses through a medium over time. It appears in various fields, such as thermodynamics, 

fluid dynamics, and materials science, and is a cornerstone of understanding diffusive processes. Mathematically, 

the heat equation in one spatial dimension is expressed as: 

𝝏𝒖

𝝏𝒕
= 𝜶

𝝏𝟐𝒖

𝝏𝒙
  , 

where (𝒖(𝒙, 𝒕) represents the temperature at position (𝒙) and time (𝒕), and (𝜶) is the thermal diffusivity, a positive 

constant that depends on the material properties. Solving this equation analytically can be challenging due to its 

dependence on both space and time, but one of the most elegant and widely applicable methods is separation of 

variables. This technique reduces the PDE into a set of ordinary differential equations (ODEs), which are easier to 

solve. In this article, we will explore the separation of variables method in detail, including its assumptions, step-by-

step derivation, and a practical example applied to a finite rod with fixed boundary conditions. 
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1.   UNDERSTANDING THE HEAT EQUATION AND ITS PHYSICAL CONTEXT 

Before delving into the solution method, it’s worth understanding the physical significance of the heat equation. The 

equation models the diffusion of heat in a medium, such as a metal rod, where the rate of change of temperature with respect 

to time 
𝜕𝑢

𝜕𝑡
   is proportional to the spatial curvature of the temperature distribution 

𝜕2𝑢

𝜕𝑥
  The constant 𝛼 encapsulates properties 

like thermal conductivity, density, and specific heat capacity, making the equation adaptable to different materials.  

To solve the heat equation, we must specify initial and boundary conditions. For instance, consider a rod of length (𝐿) where 

the ends are held at a fixed temperature ( 𝑢(0, 𝑡)  =  0 and   𝑢(𝐿, 𝑡)  =  0) and an initial temperature distribution 𝑢(𝑥, 0)  =

 𝑓(𝑥)  is given. These conditions define a well-posed problem that the separation of variables method can address effectively. 

2.   THE SEPARATION OF VARIABLES METHOD: CONCEPTUAL OVERVIEW 

The core idea of separation of variables is to assume that the solution (𝑢(𝑥, 𝑡)) can be written as a product of two functions: 

one depending only on space, (𝑋(𝑥)), and the other depending only on time, (𝑇(𝑡)). That is: 

𝑢(𝑥, 𝑡)  =  𝑋(𝑥) 𝑇(𝑡). 

This assumption simplifies the PDE by separating the spatial and temporal variables into independent equations. If this form 

holds, substituting it into the heat equation and manipulating the result leads to two ODEs whose solutions can be combined 

to satisfy the original problem’s conditions. The method relies on the linearity of the heat equation and the specific form of 

the boundary conditions, making it particularly suited for problems with homogeneous boundary conditions (e.g., zero 

temperature at the boundaries). 

 

about:blank
about:blank
https://doi.org/10.5281/zenodo.15304500


International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 13, Issue 1, pp: (31-34), Month: April 2025 - September 2025, Available at: www.researchpublish.com 

 

Page | 32 
Research Publish Journals 

 

Step-by-Step Derivation 

Let’s apply the separation of variables method to the one-dimensional heat equation with boundary conditions  

𝑢(0, 𝑡)  =  0, 𝑢(𝐿, 𝑡)  =  0, and initial condition 𝑢(𝑥, 0)  =  𝑓(𝑥). 

Substitute the Assumed Form:  

Substitute 𝑢(𝑥, 𝑡)  =  𝑋(𝑥) 𝑇(𝑡) into the heat equation: 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥
 

Compute the derivatives: 

 The time derivative: 
𝜕𝑢

𝜕𝑡
= 𝑋(𝑥)

𝑑

𝑡
 . 

 The spatial second derivative: 
𝜕2𝑢

𝜕𝑡𝑥2 = 𝛼𝑇(𝑡)
𝑑𝑋

𝑑𝑥2 

Plugging these into the heat equation gives: 

                              𝑋(𝑥)
𝑑𝑇

𝑑𝑡
= 𝛼𝑇(𝑡)

𝑑2𝑋

𝑑𝑥2 

1. Separate Variables:  

Divide both sides by (𝑋(𝑥) 𝑇(𝑡)),  

assuming  𝑋(𝑥)  ≠  0 and 𝑇(𝑡)  ≠  0 : 

1 𝑑𝑇

𝑇(𝑡)𝑑𝑡
=

𝛼𝑑2𝑋

𝑋(𝑥)𝑑𝑥2
 

The left-hand side depends only on (𝑡), and the right-hand side depends only on (𝑥). For this equality to hold for all (𝑥) 

and (𝑡), both sides must equal a constant, say −𝜆: 

1 𝑑𝑇

𝑇(𝑡)𝑑𝑡
=

𝛼𝑑2𝑋

𝑋(𝑥)𝑑𝑥2
= −𝜆 

The negative sign is chosen for convenience, as it leads to physically meaningful solutions (exponential decay in time). 

2. Form Two ODEs:  

This gives two separate equations: 

 Time equation: 
𝑑𝑇

𝑑𝑡
= −𝜆𝑇(𝑡)  

 Spatial equation: 
𝑑2𝑋

𝑑𝑥2 = −
𝜆

𝛼
 𝑋(𝑥) 

3. Solve the Spatial Equation with Boundary Conditions: 

 The spatial equation is: 

𝑑2𝑋

𝑑𝑥2
+

𝜆

𝛼
 𝑥(𝑥) = 0 

This is a second-order ODE with the general solution: 

𝑋(𝑥) = 𝐴𝑐𝑜𝑠 (
√𝜆

𝛼
𝑥) + 𝐵𝑠𝑖𝑛 (

√𝜆

𝛼
𝑥) 

where (𝐴) and (𝐵) are constants. Apply the boundary conditions: 

 𝑢(0, 𝑡)  =  𝑋(0) 𝑇(𝑡)  =  0 ⇒ 𝑋(0) = 0  

 𝑢(𝐿, 𝑡)  =  𝑋(𝐿) 𝑇(𝑡)  =  0 ⇒  𝑋(𝐿)  =  0 

 For  𝑋(0)  =  0: 
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𝑋(0)  =  𝐴 𝑐𝑜𝑠(0)  +  𝐵 𝑠𝑖𝑛(0)  =  𝐴 =  0 ⇒  𝐴 =  0. 

So, 𝑋(𝑥) = 𝐵𝑠𝑖𝑛 (
√𝜆

𝛼
𝑥) = 0 

For  𝑋(𝐿)  =  0: 

𝑋(𝐿) = 𝐵𝑠𝑖𝑛 (
√𝜆

𝛼
𝐿) = 0 

Since 𝐵 ≠ 0 (otherwise 𝑋(𝑥)  =  0, a trivial solution), we require: 

𝑠𝑖𝑛 (
√𝜆

𝛼
𝐿) = 0. 

This holds when  
√𝜆

𝛼
𝐿 = 𝑛𝜋 , where 𝑛 =  1, 2, 3, … 

(positive integers ensure non-trivial solutions). Solving for 𝜆: 

 
√𝜆

𝛼
=

𝑛𝜋

𝐿
⟹

𝜆

𝛼
= (

𝑛𝜋

𝐿
)2 ⟹ 𝜆𝑛 = 𝛼(

𝑛𝜋

𝐿
)2 

Thus, the spatial solutions are: 

𝑋𝑛(𝑥) = 𝐵𝑛𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 

 Where 𝐵𝑛(𝑥)is a constant for each (𝑛). 

4. Solve the Time Equation:  

The time equation is: 

𝑑𝑇

𝑑𝑡
= −𝜆𝑛𝑇 = −𝛼(

𝑛𝜋

𝐿
)2𝑇 

The solution is: 

𝑇𝑛(𝑡) = 𝐶𝑛𝑒−𝛼(
𝑛𝜋
𝐿

)2𝑇
 

where 𝐶𝑛 is a constant. 

5. Construct the General Solution:  

For each (𝑛), the solution is: 

𝑢𝑛(𝑥, 𝑡) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡) = 𝐵𝑛𝐶𝑛𝑒−𝛼(
𝑛𝜋
𝐿

)2𝑡  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 

Let 𝑎𝑛  =  𝐵𝑛𝐶𝑛. Since the heat equation is linear, the general solution is a superposition: 

𝑢(𝑥, 𝑡) = ∑ 𝑎𝑛𝑒−𝛼(
𝑛𝜋
𝐿

)2𝑡  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

 

6. Apply the Initial Condition: 

 At  𝑡 =  0, 𝑢(𝑥, 0)  =  𝑓(𝑥): 

𝑢(𝑥, 0) = ∑ 𝑎𝑛 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) = 𝑓(𝑥).

∞

𝑛=1

 

This is a Fourier sine series. The coefficients 𝑎𝑛 are determined by: 

𝑎𝑛 =
2

𝐿
∫ 𝑓(𝑥)𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0
, 

using the orthogonality of the sine functions over ([0, 𝐿]). 
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3.   EXAMPLE APPLICATION: COOLING OF A ROD 

Consider a rod of length 𝐿 =  1 with 𝛼 = 1, 

initial temperature 𝑓(𝑥) = sin (𝜋𝑥), and boundary conditions 

𝑢(0, 𝑡)  =  0, 𝑢(1, 𝑡)  =  0. 

Compute the coefficients: 

𝑎𝑛 = 2 ∫ 𝑠𝑖𝑛(𝜋𝑥)sin (𝑛𝜋𝑥)𝑑𝑥
1

0
. 

Using orthogonality, 𝑎1 = 1 (𝑤ℎ𝑒𝑛 𝑛 = 1) and 𝑎𝑛 = 0 𝑓𝑜𝑟 𝑛 ≠ 1. Thus: 

𝑢(𝑥, 𝑡) = 𝑒−𝜋2𝑡  𝑠𝑖𝑛(𝜋𝑥). 

This solution shows the temperature decaying exponentially while maintaining a sinusoidal spatial profile, consistent with 

heat diffusion. 

4.   ADVANTAGES AND LIMITATIONS 

The separation of variables method is powerful for problems with regular geometries and homogeneous boundary 

conditions. However, it struggles with non-homogeneous conditions or irregular domains, where numerical methods or 

transform techniques (Laplace or Fourier transforms) might be more appropriate. 

5.   CONCLUSION 

The separation of variables method provides an elegant, analytical approach to solving the heat equation, transforming a 

complex PDE into manageable ODEs. Its reliance on Fourier series connects it to broader mathematical theory, making it a 

cornerstone of applied mathematics. Through this method, we gain insight into the dynamic process of heat diffusion, 

applicable to countless real-world scenarios. 
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